TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONEWAY LATHE SPECIFICATIONS</td>
<td>5</td>
</tr>
<tr>
<td>AVAILABLE ACCESSORIES</td>
<td>5</td>
</tr>
<tr>
<td>PENDANT DESCRIPTION</td>
<td>6</td>
</tr>
<tr>
<td>ELECTRONICS</td>
<td>7</td>
</tr>
<tr>
<td>THE DRIVE</td>
<td>8</td>
</tr>
<tr>
<td>PULLEY SELECTION</td>
<td>8</td>
</tr>
<tr>
<td>TO CHANGE THE BELT</td>
<td>9</td>
</tr>
<tr>
<td>TOOLREST AND BANJO</td>
<td>9</td>
</tr>
<tr>
<td>TAILSTOCK</td>
<td>10</td>
</tr>
<tr>
<td>ASSEMBLY AND SETUP</td>
<td>10</td>
</tr>
<tr>
<td>LUBRICATION</td>
<td>11</td>
</tr>
<tr>
<td>BEARINGS</td>
<td>11</td>
</tr>
<tr>
<td>SPINDLE THREAD AND ACCESSORY LOCK</td>
<td>12</td>
</tr>
<tr>
<td>SPINDLE LOCK AND INDEXING</td>
<td>12</td>
</tr>
<tr>
<td>GENERAL SAFETY</td>
<td>13</td>
</tr>
</tbody>
</table>
ONEWAY Lathe Owner’s Manual

This manual describes general use and features of a ONEWAY Lathe. It is not meant to be a woodturning instruction book. If you are new to turning, we recommend seeking out a qualified instructor in your area. There are many national and local woodturning organizations that can recommend instructors. If you are unable to take lessons, there are many excellent books and videos available. Proper instruction will ensure that you work safely and that you can use you new lathe at it’s optimum.

ONEWAY LATHE SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>2016</th>
<th>2036</th>
<th>2416</th>
<th>2436</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance between Centers</td>
<td>16”</td>
<td>36”</td>
<td>16”</td>
<td>36”</td>
</tr>
<tr>
<td>Overall Length</td>
<td>40”</td>
<td>60”</td>
<td>40”</td>
<td>60”</td>
</tr>
<tr>
<td>Swing over Bed</td>
<td>20”</td>
<td>20”</td>
<td>24”</td>
<td>24”</td>
</tr>
<tr>
<td>Spindle Taper</td>
<td>#2 Morse Taper</td>
<td>#2 Morse Taper</td>
<td>#2 Morse Taper</td>
<td>#2 Morse Taper</td>
</tr>
<tr>
<td>Tailstock Taper</td>
<td>#3 Morse Taper</td>
<td>#3 Morse Taper</td>
<td>#3 Morse Taper</td>
<td>#3 Morse Taper</td>
</tr>
<tr>
<td>Weight</td>
<td>600 pounds</td>
<td>850 pounds</td>
<td>650 pounds</td>
<td>850 pounds</td>
</tr>
<tr>
<td>Spindle Thread</td>
<td>M33 * 3 ½ RH (both ends)</td>
</tr>
</tbody>
</table>

ONEWAY offers different models and configurations of lathe. Refer to your customized Specification Sheet for the specific details on your machine.

AVAILABLE ACCESSORIES

ONEWAY Mfg. offers two different outboard attachments. The Short Bed Extension and the Large Outboard Attachment.

Short Bed Extension
This attachment is 17” long. It can be installed at both the headstock & tailstock ends. The spindle of the ONEWAY Lathe is threaded R.H. both inboard and outboard. Add this feature to the reversing capabilities of the sophisticated drive and you have a true bowl turning lathe, not a conventional outboard. This eliminates having to learn to turn opposite to what you are accustomed to when using the outboard.

Large Outboard Attachment
For big turning a large outboard attachment can be bolted to the outboard end of these lathes with 10 bolts. Turning capacity for ONEWAY 20” swing model machines is up to 44” diameter bowls or platters and allows 36” turning over our patented big banjo.

Turning capacity for ONEWAY 24” swing model machines is up to 48” diameter bowls or platters and allows 40” turning over the big banjo. This beautifully designed outboard eliminates the need for often dangerous and wobbly floorstands. It can also be purchased to be used with other lathes, but in that case, it must be firmly bolted to a heavy concrete or sand filled box of adequate proportion.

Long Bed Extension
A long bed extension is available which is 60 inches in length. The design of this extension is the same as the bed of the lathe itself. It is a 10-3/4” diameter * 5/16” wall tube, which is stress relieved and precision machined. Turning between centers with this extension effectively increases the capacity by 60”. This extension bolts on to the end of the lathe with four bolts and comes with a leg. Weight is approximately 350 lbs.

Remote Start/Stop
A remote START/STOP control is an available accessory. This option is especially convenient when turning outboard or on a large bed extension. It is wired into the control box and can be attached anywhere on the lathe with its magnetized control box.

Spindle Adaptor
ONEWAY offers special adaptors to fit your existing tooling (if required) for most standard machines.
PENDANT DESCRIPTION

EMERGENCY STOP
This button is for “Emergencies” only. The machine will coast to a stop if this button is pushed in. Use the regular STOP button if you want the lathe to brake to a stop. To turn the machine on and off, use the on/off switch on the side of the drive.

Important: This button MUST be in the “OUT” position before you turn on the lathe. You must twist it to get it in the OUT position.

START Button
Push this button to start the spindle rotation. Before pushing the button, ensure the speed select is in the appropriate position for the piece you are working on. After pushing the start button the lathe will accelerate in 4 seconds up to the speed you select. If you have the deceleration selector switch set to LONG, the lathe will take 6 seconds to accelerate up to speed.

TIP: It is always a good idea to set the speed to ZERO, and then gradually increase speed to the desired level everytime you put on a new piece.

FORWARD/REVERSE Switch
Set this switch to Forward for normal inboard operation, and Reverse for normal outboard operation. This allows for normal right-handed turning for inboard and outboard. Flipping the switch while the lathe is running will cause the lathe to decelerate to 0 rpm and then re-accelerate in the opposite direction to the selected speed. Changing the direction of the rotation while the lathe is running will not harm the motor or the drive.

STOP Button
This button stops spindle rotation. Short deceleration is 4 seconds. Long deceleration is 12 seconds. Short or long deceleration is selected with the toggle switch, located on the left side of the Pendant. It is possible when stopping a large piece from high speed that the drive will get overloaded with too much voltage. If this happens, the drive shuts down to protect itself, and the lathe will coast to a stop. If this happens, turn the lathe off (using the ON/OFF switch), wait 20 seconds, and turn the power back on again. Move the Deceleration switch to Long and resume working. Most work can be done with the deceleration set to Short.

SPEED POT
Lathe speed is selected with a combination of the pulley selected and the speed pot. Around the speed pot there are 3 rings. The inner ring is marked with the numbers 1 thru 8. Each of these numbers represent the speed x100 (i.e. 2 = 200 rpm). Please note that the lathe does run less that 100 rpm but does not go to zero for safety reasons.

What the Rings correspond to:
- **Inner Ring:** largest pulley in the headstock, smallest pulley on motor.
- **Middle Ring:** middle pulley in headstock, middle pulley on motor.
- **Outer Ring:** smallest pulley in headstock, largest pulley on motor.
This ONEWAY lathe requires 200 – 230 volt, single phase, 15 Amp power. The drive comes programmed from the factory to run at 60 cycles, but can be set to run at 50 cycles if required.

Note: The 2 & 3 horsepower machines contain drives that auto-sense the number of cycles.

To set the drive to run 50 cycles:
1. Turn on the power and open the electric box (gray box below the headstock). Be careful not to touch anything in the box as there is 220V power active.
2. Press the DSPL button until the red PGRM diode (light) is lit.
3. Press the enter button and use the up arrows until the drive flashes 1. Press Enter.
4. Press the button marked DSPL until the red FBAS diode lights up.
5. Press the up (or down) arrow until the frequency you require is displayed (usually 50 or 60 Hz).
6. Press the Enter button.
7. Press the DSPL button until the green FREF diode is lit. The drive will not run if a red diode is lit.

Most electrical problems are very rare, and you can find a complete description of them in the VS Mini or PC3 Instruction Manual that shipped with your lathe. To see what error your drive has recorded, you will need to open up the electrical box (grey box underneath the headstock), and read the error message on the display.

Note: To read the display you must leave the power on with the door open.

Common Problems and how to avoid them:

1. The most common cause of the unit shutting itself off is stopping large pieces too quickly, therefore causing excess voltage and the drive tripping out (self-protection). If you press the STOP button and the lathe does not brake, but coasts to a stop, this is what has happened. Refer to the section “If your Drive does trip out” below, to reset your Drive.
2. The Drive can also trip itself out if the speed is changed while turning a piece. To prevent this from happening again, put the deceleration toggle switch into the Long position. Keep in mind that as a piece gets more in balance and you increase the speed, even though you have reduced the weight, the increased speed makes stopping more difficult. This is why the lathe might stop normally when you first start a piece but might trip out later when you increase the speed. You can also reduce braking problems by selecting the proper pulley. It is much easier for the drive to stop the lathe if the lathe is on the largest headstock pulley (slowest speed) than if the lathe is on the smallest (fastest speed) headstock pulley. Selecting the Long break time, will also stop the drive from tripping out when the speed pot is turned rapidly while working on a large piece.
3. The drive unit that comes with your lathe also monitors the amount of current and the length of time that current has been flowing. If the motor has been drawing excess current for too long the drive will shut down to protect the motor. This can happen if the lathe has been running slowly for a long time. To prevent this problem, use the largest headstock pulley (slowest speed) suitable for the job to keep the motor speed high.

Sudden high power demands can cause the drive to shut down also. For example, if you have a very large catch, the drive may shut down.

If Your Drive Does Trip Out
The Drive unit that controls the motor is a very sophisticated drive that constantly monitors the motor, incoming power, and itself. If the unit detects a condition that will cause damage to any part of the drive system, it will shut itself down and the motor will coast to a stop. If this happens, the lathe will not respond to any input from the pendant control. To reset the Drive, turn the power off, LET THE LATHE SIT FOR 20 SECONDS, and then turn the power back on.
THE DRIVE

The drive unit can be programmed to function in many different ways. There are over 60 programmable parameters in the AC controller.

Radio Interference

The drive unit in the lathe broadcasts radio interference that affects AM radio. To fix this problem the drive can be fitted with a filter to eliminate radio interference. Please contact ONEWAY Mfg for more information.

PULLEY SELECTION

ONEWAY Lathes use an AC, variable speed, control and a three-step pulley to give a high top speed and good low speed torque. The drive and motor work best when the motor is running fast. The best pulley to use is the one that gives the range you want for the piece you are working on. If, for example, you want to turn a 10” bowl you would select the middle pulley. This pulley will give lots of torque for the rough turning and go fast enough for finish turning. Starting on the biggest headstock pulley (slowest speed) would require you to stop to change belts after you had the piece roughed out. This should not be necessary. If you started on the smallest headstock pulley (highest speed), you might find that the drive and motor don’t generate enough torque when you are roughing out.

The following guidelines are only approximate and must be reduced if the piece you are working on is out of balance, checked, or in any other way flawed. These speeds are only for side grain pieces:
• Bowls less than 3” – small headstock pulley (fastest speed)
• Bowls more than 3” and less than 12” – middle headstock pulley
• Bowls larger than 12” – large headstock pulley (slowest speed)

A general rule of thumb to determine the lathe speed:

Multiply the rpm x bowl diameter and the answer should be between 6000 and 9000. For example:
6” bowl x 1000 rpm = 6000
6” bowl x 1500 rpm = 9000

Therefore, if you are turning a 6” bowl, the lathe should run somewhere between 1000 and 1500 rpm.

Note: This is only a guideline, and speed must be reduced to compensate for out-of-balance or flawed pieces.

Below is the Headstock with the headstock cover removed. The belt is shown on the middle pulley.
TO CHANGE THE BELT

1. Stop the lathe.
2. Remove the headstock cover and unlatch the rear motor bay door (two latches). The door will open.
 Note: If the lathe was still running, when the door is opened, it will stop.
3. Pull out the lever extension (refer Lever A on diagram), and loosen the speed handle (Refer diagram). Use the lever to lift the motor, then lock it (in the raised position), using the speed handle again.
4. Move the belt to the desired step on the headstock pulley, and then to the corresponding step on the motor pulley. Ensure the belt is correctly located in the grooves on both pulleys.
5. Grasp the lifting lever and loosen off the speed handle. Lower the motor, and apply downward pressure (25-50 lbs). While still applying downward pressure, tighten the speed handle to lock the motor in place. Check the belt again to ensure it is seated correctly (in the grooves), on both pulleys.
6. Close the motor bay door (using the two latches), and replace the headstock cover.

TOOLREST AND BANJO

The banjo (toolrest base) has a mechanism (Patent Pending) that ensure tight clamping and consistent lever clamping position, regardless of where the banjo in clamped. To ensure continuing smooth operation, lubricate the mechanism whenever it seems to be getting sticky.

Banjo Clamp Handle
The banjo handle will clamp either to the left or right.

Toolrest Clamp Lever
The toolrest clamp lever can be adjusted to clamp in any position. To change the position of this lever, unscrew the four screws that hold the clamp nut in place, rotate it to the desired position and re-fasted the nut with the screws.

Note: There are 8 holes in the clamp nut, allowing adjustments of 1/8 rotational increments. The handle clamp position is an individual preference, but the 5 O’clock position is a good place to start.
The tailstock on the ONEWAY lathes has a #3 Morse Taper in the barrel and a hole thru for lamp hole augers. The thread on the quill is a 6 pitch Acme thread that allows rapid feed in and retractions for drilling with the tailstock.

The Clamp Handle

This handle clamps the tailstock to the bed. The position of the handle is adjusted by means of a shim stack on the bottom of the clamp block. To change the lock position, loosen off the two bolts in the clamp block, add or remove shims, and re-tighten the bolts.

The #3 Morse Taper

The Morse taper in the tailstock is greatly affected by how clean the taper is. Even a small amount of dust, or oil, will significantly reduce the drive force that can be exerted by the tailstock before accessories will spin in the taper. Always wipe any accessory and the taper with a clean rag before putting the accessory into the tailstock.

Installation and Removal of Accessories

To install an accessory in to the tailstock, wind the barrel out 1”. Put the accessory in the barrel, and snap it into the taper. Most accessories are self-ejecting. To remove the accessory, wind the barrel back until the accessory pops out.

ASSEMBLY AND SETUP

Your lathe comes disassembled from the factory and will need to be assembled before it can be used. Before setting up the lathe you should select a location. The best location for the lathe is on a level concrete floor. The electrical box and motor should be kept as cool as possible so do not put the lathe where sun will shine directly on the box or right in front of a furnace vent.

The first step is to remove the bed from the shipping palette and position it at your desired location.

The second step is to install the headstock. There will be a box in the crate with the belt cover, bolts and headstock shims (not all lathes will have shim). If there are shims in the box put the shims on the lathe bed where the headstock will go with equal shims on both sides. Put the headstock on the bed and install the M10 x 40 bolts. Use the M8 allen key supplied. Put the belt through the hole and onto the motor pulley.

The next step is to install the pendant arm and cable hanger. First you must remove the Stop Boss (Part# 2482A – Refer to Pg. 22). Loosen the set screws with the 4 MM T-handle hex key supplied and slide it off. Slide the pendant up into the black pendant mounting tube (located on the backside of the lathe) and re-attach the Stop Boss (Part# 2482a). Tighten set screws while supporting the pendant.

Note: The position of the stop boss depends on where you like the pendant to “lock” in place. This can be set to suit your personal preference.

The Banjo and Tailstock are then installed on to the bed consecutively. To install the banjo, ensure that the banjo clamp handle is in the up position to “loosen” the clamp block, which slides under the bed-ways. The tailstock clamp handle must also be in the “rest” position for it to slide on the bed.

In the lathe accessories box there are four metal pads and in the base of each leg there is a setscrew. These pads and screws are for equalizing the pressure on the lathe legs. Put a pad under the setscrew that is in each leg. Screw the set screws down until there is even pressure on each pad and then tighten the locknuts. Doing this will help eliminate vibration caused by uneven floors and the resultant uneven pressure on each leg. It is not necessary to level the lathe.

When you are done setting up the lathe you might consider removing the tube cover at the tailstock end of the lathe.
Removing this cover will help increase airflow to the motor and the inside of the tube is a real handy spot to store tools.

If you want to fill the tube with sand we recommend putting the sand in small bags and double bagging. Do not fill the tube more than half full as this will impede airflow over the motor. There is a plate welded 18 inches from the headstock end of the tube. Do not fill over this plate, as this will protect the motor from any damage if the sand leaks out of a bag. Filling the tube with sand will not greatly increase performance.

Each leg is predrilled for bolt down holes. Properly grouting in the legs and bolting the lathe down will greatly increase the stability and safety of the lathe.

LUBRICATION

ONEWAY Lathes, like any mechanical device, needs lubrication to function at its optimum. Woodturning creates dust and turning wet wood sprays water and chemicals onto the lathe. Some of these chemicals are acidic and can quickly rust the bed. To minimize bed and tailstock quill rust, apply a heavy-duty paste wax. Doing this will not noticeably affect clamping. After turning, the lathe should be wiped down - particularly the bed. Wiping an oily rag over exposed metal will help keep your lathe functioning better and last longer. Oil on the bed should be wiped off before using the lathe so that the tailstock and banjo clamp tightly.

There are two areas on the lathe that require lubrication: the tailstock and the banjo clamping. The tailstock quill is a precision fit and to maintain factory performance it should be kept lightly oiled at all times. Wind the quill all the way out, put a few drops of oil on the barrel and wind it in. Putting oil on the clamping mechanism will help ensure long life and good clamping force. To oil the clamp mechanism put a few drops on the shaft through the hole in the back of the tailstock. The banjo uses a patent pending mechanism that eliminates flex in the shaft and ensures tight clamping over the entire range of the banjo. Lubricating the mechanism will ensure that the clamping force is used to clamp the banjo not to overcome friction in the mechanism. Any anti-seize lubricant will work but we find that Fel-Pro anti-seize lubricant C5-A works well. You should only have to lubricate the mechanism when it is not clamping well. Remove the banjo from the lathe and lubricate the sliding cam. Putting oil on the shaft helps ensure the banjo continues to slide freely.

BEARINGS

There are four spindle bearings in the headstock. These bearings are sealed and lubricated from the factory and should never need adjustment or lubrication. The bearings and the spindle in your lathe are very large and designed to take normal woodturning forces for a long time. The best way to ensure long bearing life is to never hammer the spindle.

Due to the size and the preload on the bearings the lathe will run quite hot when it is new. As the bearings break in they will run cooler but will still get warm. Each lathe is run in at the factory and checked for excess temperatures but it is good idea to keep the speed below 2000 rpm for the first 30 hours of operation. This allows excess grease in the bearings to escape and for the seals to break in. When replacing the bearings it is best to replace the front bearings with a matched set from ONEWAY Mfg. The rear bearing can be replaced by any equivalent bearing.

Replacing the Bearings

To replace the bearings you must remove the spindle. The first step is to take the belt off the motor pulley and pull the belt part way thru the headstock belt change hole. Remove the six bolts in the spindle nose cap. Grab the nose cap and the entire spindle assembly should slide out. If it is tight take two of the bolts you just removed and put them into the two tapped holes in the nose cap. Tighten them alternately and this will jack out the spindle. Be careful when removing the spindle as the assembly weighs over 25 lbs. If you do not have a proper set of bearing tools it is a good idea to send the spindle back to ONEWAY to prevent damage to the spindle and to the new bearings.

ONEWAY Mfg. 241 Monteith Avenue, Stratford, Ontario. N5A 2P6
1 - 800 – 565 – 7288
Made in Canada
SPINDLE THREAD AND ACCESSORY LOCK

The spindle of ONEWAY Lathes are threaded M33 x 3.5 and has a locking groove to help ensure that accessories threaded on the spindle do not loosen off during use. There are two set screws on all ONEWAY accessories that fit your lathe. Screw the accessory securely onto the lathe and then tighten the two set screws using an M4 allen key.

Note: Metric threads have two terms. The first term (M33) refers to the diameter of the spindle in millimeters and the second term (3.5) refers to the distance between threads in millimeters.

SPINDLE LOCK AND INDEXING

When removing accessories it is necessary to lock the spindle. The spindle lock is located at the back end of the headstock. Lift the lever from the disengaged position and push it in gently. At the same time slowly rotate the spindle by hand. The spindle lock pin will engage a hole in a plate in the headstock. When the pin locks in place drop the lever into the second slot to keep the spindle locked in place. To unlock the spindle lift the lever, pull it back and drop it into the unlocked position. If you start the lathe with the spindle lock in place the lathe will not be damaged. If you do start the lathe with the spindle locked, press the stop button and remove the spindle lock. Leaving the lock pin in with the lathe started will eventually cause the lathe to shut off. To restart the lathe in this situation it will be necessary to press the EMERGENCY STOP and let the control sit for 20 seconds to reset itself.

The spindle indexing pin is locked into an engaged or disengaged position with a setscrew. The setscrew for the spindle lock is located at the top and rear of the headstock and requires a 4-MM allen key. To use the spindle indexing, loosen the setscrew, slide the pin forward while rotating the spindle by hand. The pin will engage one of 48 holes and then lock the pin in place with the setscrew. To see the indexing ring, open the belt change lid and look at the face of the largest pulley. There is no mechanism to mark what hole you are using supplied with the lathe. Clipping a clothespin on the headstock in the belt change hole works great and allows you to select what index numbers you work with. You can also put a strip of masking tape across the belt hole and use that.

Refer to page 24 for a guide for indexing positions titled "Index Guide Instruction".
GENERAL SAFETY

Woodturning is an activity that can involve heavy workpieces revolving at high speeds.

ONEWAY Lathes are very heavy solid machines and can rotate pieces faster than most other lathes. ONEWAY Lathes are also very quiet and it is easy to run the lathe faster than you think it is going. Bark, shavings and pieces of wood can fly from the lathe with considerable force, unexpectedly, at any time. Always wear face protection to prevent injury in such instances. Safety glasses will not protect your whole face. Wear a full-face shield and if possible, wear lung protection as well. A powered respirator is a good investment for any woodturner.

The best way to avoid injury is to stay out of the firing line. Professional instructors can teach you where to stand to minimize injury potential from flying debris. As when working with any tool, a sensible approach, with simple safety precautions, should be followed.

Special Safety Note

Do not use the 6" Faceplate as a hand wheel. The reinforcing ribs on this faceplate causes a dangerous pinch area with the spindle index and locking mechanism if used as a hand wheel. If you feel a hand wheel is required you should make one from wood and install it with one of 2 bushings supplied with the lathe. Make sure that at least 1½" clearance exists between an installed hand wheel and the spindle lock mechanism. Optionally order part #2802. This is a hand wheel hub designed for this purpose.

Common Sense Safety Rules.
1. Always keep guards in place.
2. Always wear eye protection. Use safety glasses or a full face shield when appropriate. Work in a well-lit environment.
3. Wear lung protection. Wear a dust mask if cutting dry/dusty wood and when sanding.
4. Do not wear loose clothing. Shirts should have short sleeves. Never wear a tie when working with any power equipment.
5. Never wear jewelry (ex watches, necklaces, rings and bracelets) while working with a wood lathe.
6. Long hair should be tied up or stuffed into a hat. Long beards can get caught and should be tied back or removed.
7. Keep your shop floor free from objects that can be stumbled over.

Woodturning generates lots of chips, which will quickly hide any hazards on the floor. Keep the work area clean. Accidents are less likely to occur in a tidy work area where all sharp tools are put in their proper place.

Before You Start:
8. Check your lathe and work area before you start to make sure that everything is in proper working order and there is nothing lying loosely on the lathe. Ensure that the proper belt is selected and that the speed pot is dialed down to the lowest speed. Make sure that the workpiece is fastened securely to the lathe and that the toolrest and bed are tightened. Rotate your work manually before starting power. This will both assure that the toolrest is adjusted properly; adjust the toolrest height properly; adjust the tool rest so that it is as close to your work piece as possible; remove the tool rest when sanding or buffing.

While You Are Working
9. Stop the lathe before moving the toolrest. If you move the rest while the lathe is running you risk damaging the lathe, your workpiece and your fingers. Never touch the spinning wood.
10. Do not force your tool. A sharp tool used properly will remove wood very quickly without being forced. Pushing hard will lead to many problems, not just safety problems. Always use the proper tool for the job. Keep your tools sharp and clean for best results. Sharp tools are more predictable and behave better than dull tools.
11. Never wrap rags or abrasives around your fingers. They can get caught and cause severe injury.
12. If you have small children around, please be aware that they can walk into the firing line and be hit with chips or other debris.
13. If you hear your lathe making a new sound stop and investigate. New sounds are usually a sign of something going wrong.
14. Do not turn obviously damaged or weakened wood. Check for splits, cracks or weak spots before mounting it on the lathe. If turning a piece of glued wood, ensure that glue joints are secure.
15. Never leave the lathe running while unattended. Wait until the lathe comes to a complete stop before leaving the area.
16. Always make sure that the lathe is running in forward while turning inboard, and in reverse while turning outboard.
17. Disconnect the power source when the motor is being mounted, connected or reconnected.
18. The Tool Rest: adjust the tool rest height properly; adjust the tool rest so that it is as close to your work piece as possible; remove the tool rest when sanding or buffing.
19. When roughing, always work downhill, roughing from large to small diameter.